Affiliation:
1. Department of Medicine, University of California, San Diego, La Jolla 92093-0623, USA.
Abstract
This study was designed to investigate 1) whether a protocol employing a gradual reduction in O2 availability to submaximally contracting muscle results in relatively minor disturbances in intracellular homeostasis and 2) the interaction between tissue oxygenation and the proposed regulators of muscle respiration, metabolism, and force production. O2 delivery to isolated submaximally contracting [isometric contractions at 3 Hz; approximately 50% of peak O2 uptake (VO2)] in situ canine gastrocnemius (n = 6) was manipulated by decreasing arterial PO2 (hypoxemia; H) or muscle blood flow (ischemia; I) during three separate periods in each muscle [control (C), H, or I; each separated by 45 min of rest]. O2 delivery was reduced gradually in small steps every 3 min by H or I during two of the contraction periods (6 steps for a total of 21 min; O2 delivery reduced by 67% by the end of 21 min), whereas C was at normal O2 delivery for a 15-min period. Muscle VO2 was maintained at control levels for the first two O2 delivery reduction steps for the H and I conditions and then fell proportionally with O2 delivery to approximately 35% of the initial value by the end of the 21-min contraction period. Muscle force development generally fell in parallel with VO2. There was no significant changes from the values obtained during C contractions in intracellular concentrations of ATP, phosphocreatine, NH3, calculated free ADP, lactate, and redox state ratios as the O2 delivery was reduced, even with the severe decline in VO2 and developed force. These results demonstrated that when O2 availability was reduced gradually to contracting skeletal muscle, 1) developed force (ATP utilization) was reduced through a tight coupling with aerobic ATP supply, such that there was little additional disruption of intracellular homeostasis, and 2) there was an apparent dissociation of some of the proposed regulators of cell respiration and force development from the control of these processes.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献