Augmented hypoxic cerebral vasodilation in men during 5 days at 3,810 m altitude

Author:

Jensen J. B.1,Sperling B.1,Severinghaus J. W.1,Lassen N. A.1

Affiliation:

1. Department of Clinical Physiology and Nuclear Medicine, Bispebjerg Hospital, Copenhagen, Denmark.

Abstract

The fractional increase in cerebral blood flow (CBF) velocity (VCBF) from the control value with 5-min steps of isocapnic hypoxia and hyperoxic hypercapnia was measured by transcranial Doppler in six sea-level native men before and during a 5-day sojourn at 3,810 m altitude to determine whether cerebral vasoreactivity to low arterial O2 saturation (SaO2) gradually increased [as does the hypoxic ventilatory response (HVR)] or diminished (adapted, in concert with known slow fall of CBF) at altitude. A control resting PCO2 value was chosen each day during preliminary hyperoxia to set ventilation at 140 ml.kg-1.min-1 for this and the parallel HVR study, attempting to establish control cerebrospinal fluid (CSF) and brain extracellular fluid pH values unaltered by acclimatization. The relationship of CBF to SaO2 was nonlinear, steepening at a lower SaO2. A hyperbolic equation was used to describe hypoxic cerebrovascular reactivity: fractional VCBF = x[60/ (SaO2-40)-1], where X is the fractional increase of VCBF at 70%.X rose from 0.346 +/- 0.104 (SD) at sea level to 0.463 +/- 0.084 on altitude day 5 (P < 0.05 by paired t-test, justified by the a priori experimental plan). For comparison with CO2 sensitivity, from these X values, we estimate the rise in CBF in response to a 1% fall in SaO2 at 80% to be 1.30% at sea level and 1.74% after 5 days at altitude. CBF sensitivity to increased end-tidal PCO2 rose from 4.01 +/- 0.62%/Torr at sea level to 5.12 +/- 0.79%/Torr on day 5 (P < 0.05), as expected, at the lower PCO2 due to the logarithmic relationship of PCO2 to CSF pH. This change was not significant after correction to log PCO2. We conclude that the cerebral vascular response to acute isocapnic hypoxia may increase during acclimatization at high altitude. The mechanism is unknown but is presumably unrelated to the parallel carotid chemosensitization that, in these subjects, increased the HVR by 60% in the same 5-day period from 0.91 +/- 0.38 to 1.46 +/- 0.59 l.min-1.% fall in SaO2-1).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3