Differential respiratory activity of four abdominal muscles in humans

Author:

Abe T.1,Kusuhara N.1,Yoshimura N.1,Tomita T.1,Easton P. A.1

Affiliation:

1. Kitasato University, Kanagawa, Japan.

Abstract

Together the abdominal muscles contribute significantly to ventilation under some conditions, but there is little information regarding individual recruitment and timing of activation of the four abdominal muscles in humans. Fine-wire electrodes were inserted under direct vision guided by high-resolution ultra-sound into the rectus abdominis (Rectus), external oblique (Extern), internal oblique (Intern), and transversus abdominis (Transv) in nine awake healthy subjects. Airflow, end-tidal CO2, and moving-average EMG signals were recorded during 1) supine resting and CO2-stimulated ventilation and 2) resting ventilation in the standing position. During resting supine breathing, Transv showed significant phasic EMG activity during expiration. As posture changed from supine to standing, phasic activity during resting ventilation was greatest in Transv, with lesser activity in Intern and Extern, while Rectus remained inactive. As CO2 began to increase, Transv was activated first, followed by Intern, the Extern, and finally Rectus. With moderate CO2 stimulation, Transv and Intern were more active than was Extern and Rectus remained least active. EMG activities in the expiratory muscles after cessation of expiratory flow (postexpiratory expiratory activity) and in expiratory muscle activity preceding expiratory flow were observed consistently during supine stimulated ventilation and standing resting ventilation. These activities before and after expiratory airflow were prominent with stimulated ventilation during a substantial portion of inspiration, suggesting dual control of inspiratory pump action by both inspiratory and expiratory muscles, which provide acceleration and braking actions, respectively. These results suggest that in awake humans 1) during resting ventilation, expiration is an active process; 2) abdominal muscles are activated differentially; 3) Transv is the most active, Intern and Extern are intermediate, and Rectus is the least active expiratory muscle; and 4) during stimulated ventilation, inspiratory and expiratory muscles contribute dually to inspiratory pump action.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3