Impact of acute exercise intensity on pulsatile growth hormone release in men

Author:

Pritzlaff Cathy J.1,Wideman Laurie2,Weltman Judy Y.2,Abbott Robert D.3,Gutgesell Margaret E.4,Hartman Mark L.2,Veldhuis Johannes D.2,Weltman Arthur12

Affiliation:

1. Departments of Human Services,

2. Medicine,

3. Health Evaluation Sciences, and

4. Pediatrics, University of Virginia, Charlottesville, Virginia 22908

Abstract

To investigate the effects of exercise intensity on growth hormone (GH) release, 10 male subjects were tested on 6 randomly ordered occasions [1 control condition (C), 5 exercise conditions (Ex)]. Serum GH concentrations were measured in samples obtained at 10-min intervals between 0700 and 0900 (baseline) and 0900 and 1300 (exercise+ recovery). Integrated GH concentrations (IGHC) were calculated by trapezoidal reconstruction. During Ex subjects exercised for 30 min (0900–0930) at one of the following intensities [normalized to the lactate threshold (LT)]: 25 and 75% of the difference between LT and rest (0.25LT and 0.75LT, respectively), at LT, and at 25 and 75% of the difference between LT and peak (1.25LT and 1.75LT, respectively). No differences were observed among conditions for baseline IGHC. Exercise+recovery IGHC (mean ± SE: C = 250 ± 60; 0.25LT = 203 ± 69; 0.75LT = 448 ± 125; LT = 452 ± 119; 1.25LT = 512 ± 121; 1.75LT = 713 ± 115 μg ⋅ l−1 ⋅ min−1) increased linearly with increasing exercise intensity ( P < 0.05). Deconvolution analysis revealed that increasing exercise intensity resulted in a linear increase in the mass of GH secreted per pulse and GH production rate [production rate increased from 16.5 ± 4.5 (C) to 32.1 ± 5.2 μg ⋅ distribution volume−1 ⋅ min−1(1.75LT), P < 0.05], with no changes in GH pulse frequency or half-life of elimination. We conclude that the GH secretory response to exercise is related to exercise intensity in a linear dose-response pattern in young men.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3