Affiliation:
1. Division of Clinical Sciences, Institute for Child Health Research, Perth, Western Australia 6001; and
2. Department of Medical Informatics and Engineering, Albert Szent-Györgyi Medical University, H-6701 Szeged, Hungary
Abstract
We investigated the effects of a selective β2-agonist, salbutamol, and of phosphodiesterase type 4 inhibition with 4-(3-butoxy-4-methoxy benzyl)-2-imidazolidinone (Ro-20-1724) on the airway and parenchymal mechanics during steady-state constriction induced by MCh administered as an aerosol or intravenously (iv). The wave-tube technique was used to measure the lung input impedance (Zl) between 0.5 and 20 Hz in 31 anesthetized, paralyzed, open-chest adult Brown Norway rats. To separate the airway and parenchymal responses, a model containing an airway resistance (Raw) and inertance (Iaw), and a parenchymal damping (G) and elastance (H), was fitted to Zl spectra under control conditions, during steady-state constriction, and after either salbutamol or Ro-20-1724 delivery. In the Brown Norway rat, the response to iv MCh infusion was seen in Raw and G, whereas continuous aerosolized MCh challenge produced increases in G and H only. Both salbutamol, administered either as an aerosol or iv, and Ro-20-1724 significantly reversed the increases in Raw and G when MCh was administered iv. During the MCh aerosol challenge, Ro-20-1724 significantly reversed the increases in G and H, whereas salbutamol had no effect. These results suggest that, after MCh-induced changes in lung function, salbutamol increases the airway caliber. Ro-20-1724 is effective in reversing the airway narrowings, and it may also decrease the parenchymal constriction.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献