The adenosine A1-receptor antagonist 8-CPT reverses ethanol-induced inhibition of fetal breathing movements

Author:

Watson C. S.1,White S. E.1,Homan J. H.1,Fraher L.2,Brien J. F.3,Bocking A. D.1

Affiliation:

1. Departments of Physiology and Obstetrics and Gynecology, Medical Research Council Group in Fetal and Neonatal Health and Development, and

2. Departments of Medicine and Biochemistry, Lawson Research Institute, University of Western Ontario, London, Ontario N6A 4V2; and

3. Department of Pharmacology and Toxicology, Queen’s University, Kingston, Ontario, Canada K7L 3N6

Abstract

Administration of either ethanol or adenosine inhibits fetal breathing movements (FBM), eye movements, and low-voltage electrocortical activity (LV ECoG). The concentration of adenosine in ovine fetal cerebral extracellular fluid increases during ethanol-induced inhibition of FBM. The purpose of this study was to determine the effect of a selective adenosine A1-receptor antagonist, 8-cyclopentyltheophylline (8-CPT) on the incidence of FBM during ethanol exposure. After a 2-h control period, seven pregnant ewes received a 1-h intravenous infusion of ethanol (1 g/kg maternal body wt), followed 1 h later by a 2-h fetal intravenous infusion of either 8-CPT (3.78 ± 0.08 μg ⋅ kg−1 ⋅ min−1) or vehicle. Ethanol reduced the incidence of FBM from 44.0 ± 10.4 to 2.7 ± 1.3% ( P < 0.05) and 51.2 ± 7.6 to 11.9 ± 5.0% ( P < 0.05) in fetuses destined to receive 8-CPT or vehicle, respectively. In the vehicle group, FBM remained suppressed for 7 h. In contrast, during the first hour of 8-CPT infusion, FBM returned to baseline (31 ± 11%) and was not different from control throughout the rest of the experiment. Ethanol also decreased the incidence of both low-voltage electrocortical activity and eye movements, but there were no differences in the incidences of these behavioral parameters between the 8-CPT and vehicle groups throughout the experiment. These data are consistent with the hypothesis that adenosine, acting via A1 receptors, may play a role in the mechanism of ethanol-induced inhibition of FBM.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3