Natural surfactant and hyperoxic lung injury in primates. I. Physiology and biochemistry

Author:

Huang Y. C.1,Caminiti S. P.1,Fawcett T. A.1,Moon R. E.1,Fracica P. J.1,Miller F. J.1,Young S. L.1,Piantadosi C. A.1

Affiliation:

1. Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

Surfactant dysfunction contributes to the pathophysiology of adult respiratory distress syndrome (ARDS), and we hypothesized that surfactant treatment would improve experimental ARDS produced by continuous exposure to hyperoxia. Twelve healthy male baboons (10–15 kg) were anesthetized, paralyzed, and mechanically ventilated with 2.5 cmH2O positive end-expiratory pressure (PEEP) for 96 h. Baboons were divided into three groups: 1) the O2 group (n = 5) received 100% O2, 2) the surfactant group (n = 5) received 100% O2 and aerosolized porcine surfactant, and 3) a control group (n = 2) was ventilated at fractional concentration of inspired O2 of 0.21 for 96 h to control for effects of anesthesia and mechanical ventilation. Hemodynamic parameters were obtained every 12 h, and ventilation-perfusion (VA/Q) distribution was measured daily by multiple inert gas elimination technique. PEEP was increased once or twice daily to 10 cmH2O for 30 min to study its effects on measurements of VA/Q. At the end of experiments, lungs were obtained for biochemical analysis. Prolonged hyperoxia resulted in progressive worsening in VA/Q, hemodynamic deterioration, severe lung edema, and altered surfactant metabolism. Surfactant administration increased disaturated phosphatidylcholine in lavage fluid but did not improve lung edema or gas exchange. In the surfactant group, however, the addition of 10 cmH2O PEEP resulted in a greater degree of shunt reduction than did 2.5 cmH2O PEEP (47 vs. 31% in the O2 group, P < 0.05). We conclude that aerosolized porcine surfactant did not prevent pulmonary O2 injury in baboons, but it potentiated the shunt-reducing effect of PEEP.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3