Pulmonary neutrophil kinetics after thrombin-induced intravascular coagulation

Author:

Cooper J. A.,Solano S. J.,Bizios R.,Kaplan J. E.,Malik A. B.

Abstract

Previous studies have indicated that neutrophils are required for the development of increased lung vascular permeability after thrombin-induced pulmonary microembolization. In this study, we examined neutrophil kinetics and uptake in the sheep lung before and after lung vascular injury. Sheep neutrophils were isolated by a Percoll-gradient method and labeled with indium-111 oxine. A maximum lung activity of 40% of the injected indium-111 neutrophil activity was attained 8–12 min after the injection. The calculated half-lives of both circulating and pulmonary neutrophils were 700 min. The rate of washout of labeled neutrophils from the lungs was the same as the loss of the peripheral blood activity, indicating removal of neutrophils from the lung and blood by a common pathway (e.g., liver and spleen). Intravenous infusion of alpha-thrombin resulted in an immediate uptake of neutrophils of 14% above the base-line activity. The increased uptake was associated with an immediate decrease in the blood activity, indicating sequestration of the neutrophils in the pulmonary circulation. The neutrophil uptake after alpha-thrombin was transient, reaching a maximum 15 min after infusion. Neutrophil uptake did not occur with alpha-thrombin (which lacks the fibrinogen recognition site), suggesting that the uptake was secondary to intravascular coagulation. An increase in the pulmonary blood volume cannot explain the increased neutrophil sequestration because pulmonary blood volume determined by [99mTc]pertechnetate-labeled erythrocytes did not increase after the alpha-thrombin infusion. Therefore, alpha-thrombin results in a transient neutrophil sequestration in the lung, and the response is secondary to the intravascular coagulation induced by the alpha-thrombin.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3