Author:
Bongianni F.,Corda M.,Fontana G.,Pantaleo T.
Abstract
The effects of superior laryngeal nerve (SLN) stimulation on the activity of the expiratory muscles and medullary expiration-related (ER) neurons were investigated in 24 pentobarbital-anesthetized cats. In some experiments the animals were also paralyzed and artificially ventilated. Sustained tetanic stimulation of SLN consistently caused an apneic response associated with the appearance of tonic CO2-dependent activity in the expiratory muscles and in ER neurons located in the caudal ventral respiratory group (VRG) and the Botzinger complex. Single shocks or brief tetani at the same stimulation intensities failed to evoke excitatory responses in the expiratory muscles and in the vast majority of ER neurons tested. At higher stimulation strengths, single shocks or short tetani elicited excitatory responses in the expiratory muscles (20- to 35-ms latency) and in the majority of ER neurons of the caudal VRG (7.5- to 15.5-ms latency). These responses were obtained only during the expiratory phase and proved to be CO2 independent. On the contrary, only inhibitory responses were evoked in the activity of Botzinger complex neurons. The observed tonic expiratory activity most likely represents a disinhibition phenomenon due to the suppression of inspiratory activity; activation of expiratory muscles at higher stimulation intensities appears to be a polysynaptic reflex mediated by ER neurons of the caudal VRG but not by Botzinger complex neurons.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献