Pathogenesis of nitrofen-induced congenital diaphragmatic hernia in fetal rats

Author:

Allan Douglas W.1,Greer John J.1

Affiliation:

1. Department of Physiology, Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2S2, Canada

Abstract

Allan, Douglas W., and John J. Greer. Pathogenesis of nitrofen-induced congenital diaphragmatic hernia in fetal rats. J. Appl. Physiol. 83(2): 338–347, 1997.—Congenital diaphragmatic hernia (CDH) is a developmental anomaly characterized by the malformation of the diaphragm and impaired lung development. In the present study, we tested several hypotheses regarding the pathogenesis of CDH, including those suggesting that the primary defect is due to abnormal 1) lung development, 2) phrenic nerve formation, 3) developmental processes underlying diaphragmatic myotube formation, 4) pleuroperitoneal canal closure, or 5) formation of the primordial diaphragm within the pleuroperitoneal fold. The 2,4-dichloro-phenyl- p-nitrophenyl ether (nitrofen)-induced CDH rat model was used for this study. The following parameters were compared between normal and herniated fetal rats at various stages of development: 1) weight, protein, and DNA content of lungs; 2) phrenic nerve diameter, axonal number, and motoneuron distribution; 3) formation of the phrenic nerve intramuscular branching pattern and diaphragmatic myotube formation; and 4) formation of the precursor of the diaphragmatic musculature, the pleuroperitoneal fold. We demonstrated that previously proposed theories regarding the primary role of the lung, phrenic nerve, myotube formation, and the closure of pleuroperitoneal canal in the pathogenesis of CDH are incorrect. Rather, the primary defect associated with CDH, at least in the nitrofen rat model, occurs at the earliest stage of diaphragm development, the formation of the pleuroperitoneal fold.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3