Transcapillary escape rate of albumin in humans during exercise-induced hypervolemia

Author:

Haskell Andrew1,Nadel Ethan R.1,Stachenfeld Nina S.1,Nagashima Kei1,Mack Gary W.1

Affiliation:

1. The John B. Pierce Laboratory and Departments of Epidemiology and Public Health and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519

Abstract

Haskell, Andrew, Ethan R. Nadel, Nina S. Stachenfeld, Kei Nagashima, and Gary W. Mack. Transcapillary escape rate of albumin in humans during exercise-induced hypervolemia. J. Appl. Physiol. 83(2): 407–413, 1997.—To test the hypotheses that plasma volume (PV) expansion 24 h after intense exercise is associated with reduced transcapillary escape rate of albumin (TERalb) and that local changes in transcapillary forces in the previously active tissues favor retention of protein in the vascular space, we measured PV, TERalb, plasma colloid osmotic pressure (COPp), interstitial fluid hydrostatic pressure (Pi), and colloid osmotic pressure in leg muscle and skin and capillary filtration coefficient (CFC) in the arm and leg in seven men and women before and 24 h after intense upright cycle ergometer exercise. Exercise expanded PV by 6.4% at 24 h (43.9 ± 0.8 to 46.8 ± 1.2 ml/kg, P< 0.05) and decreased total protein concentration (6.5 ± 0.1 to 6.3 ± 0.1 g/dl, P < 0.05) and COPp (26.1 ± 0.8 to 24.3 ± 0.9 mmHg, P < 0.05), although plasma albumin concentration was unchanged. TERalb tended to decline (8.4 ± 0.5 to 6.5 ± 0.7%/h, P = 0.11) and was correlated with the increase in PV ( r = −0.69, P < 0.05). CFC increased in the leg (3.2 ± 0.2 to 4.3 ± 0.5 μl ⋅ 100 g−1 ⋅ min−1 ⋅ mmHg−1, P < 0.05), and Pi showed a trend to increase in the leg muscle (2.8 ± 0.7 to 3.8 ± 0.3 mmHg, P = 0.08). These data demonstrate that TERalb is associated with PV regulation and that local transcapillary forces in the leg muscle may favor retention of albumin in the vascular space after exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3