Mechanical output following muscle stretch in forearm supination against inertial loads

Author:

Chapman A. E.,Caldwell G. E.,Selbie W. S.

Abstract

Muscle stretch enhances force produced in both single fibers and voluntarily activated human muscle. This study determined how initial conditions of muscle stretch (and associated eccentric work), muscle length, and load inertia contributed to human concentric muscular output during maximal voluntary forearm supination. Outputs of angular velocity and concentric work over specific displacements and times of motion were calculated. Multiple regression analysis was performed using these outputs and initial conditions as dependent and independent variables, respectively. Initial conditions were shown to be significant and systematic determinants of muscle output in concentric contraction. Evidence of a temporary shift in the force-velocity curve was found and discussed regarding its beneficial contribution to load movement. Greater benefit was considered to be due to the fact that muscle stretch allows time for achievement of maximal muscular recruitment prior to concentric contraction. This produces large forces at the onset of the concentric phase, in comparison with contractions starting from rest. These findings were discussed with regard to both single- and multi-segment movement patterns.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The relationship between mechanical stiffness and athletic performance markers in sub-elite footballers;Journal of Sports Sciences;2017-07-12

2. Jump Performance Enhancement Induced by Countermovement;Sports Performance;2015

3. Training Effectiveness of the Inertial Training and Measurement System;Journal of Human Kinetics;2014-12-01

4. Computational modeling of muscle biomechanics;Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System;2014

5. The syndrome of deforming spastic paresis;Cerebral Palsy in Infancy;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3