Transcapillary fluid shifts in tissues of the head and neck during and after simulated microgravity

Author:

Parazynski S. E.1,Hargens A. R.1,Tucker B.1,Aratow M.1,Styf J.1,Crenshaw A.1

Affiliation:

1. Life Sciences Division, National Aeronautics and Space Administration-Ames Research Center, Moffett Field, California 94035–1000.

Abstract

To understand the mechanism, magnitude, and time course of facial puffiness that occurs in microgravity, seven male subjects were tilted 6 degrees head-down for 8 h, and all four Starling transcapillary pressures were directly measured before, during, and after tilt. Head-down tilt (HDT) caused facial edema and a significant elevation of microvascular pressures measured in the lower lip: capillary pressures increased from 27.7 +/- 1.5 mmHg (mean +/- SE) pre-HDT to 33.9 +/- 1.7 mmHg by the end of tilt. Subcutaneous and intramuscular interstitial fluid pressures in the neck also increased as a result of HDT, whereas interstitial fluid colloid osmotic pressures remained unchanged. Plasma colloid osmotic pressure dropped significantly by 4 h of HDT (21.5 +/- 1.5 mmHg pre-HDT to 18.2 +/- 1.9 mmHg), suggesting a transition from fluid filtration to absorption in capillary beds between the heart and feet during HDT. After 4 h of seated recovery from HDT, microvascular pressures in the lip (capillary and venule pressures) remained significantly elevated by 5–8 mmHg above baseline values. During HDT, urine output was 126.5 ml/h compared with 46.7 ml/h during the control baseline period. These results suggest that facial edema resulting from HDT is caused primarily by elevated capillary pressures and decreased plasma colloid osmotic pressures. The negativity of interstitial fluid pressures above heart level also has implications for maintenance of tissue fluid balance in upright posture.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3