Dilating forces on the upper airway of anesthetized dogs

Author:

Strohl K. P.,Fouke J. M.

Abstract

We reasoned that in an isolated sealed upper airway a pressure change would be caused by a change in airway volume. In eight spontaneously breathing anesthetized dogs, we isolated the upper airway by transecting the cervical trachea and sealing it from the lung and from the atmosphere. Pressure changes in this isolated upper airway were studied in relation to respiratory phase as evidenced by alae nasi electromyographic (EMG) activation and tidal volume measured at the distal trachea. A fall in pressure, indicating airway dilation, occurred with each spontaneous respiratory effort. Like the moving average of the alae nasi EMG, the pressure drop reached a peak value early in inspiration, was inhibited by further lung inflation, and was absent during passive mechanical ventilation. End-expiratory tracheal occlusion or vagotomy prolonged and augmented EMG activity and also the inspiratory fall in upper airway pressure. Increased levels of CO2 increased the magnitude of change in pressure during inspiration. An inhibiting effect of lung inflation was present to an equal extent at low and high levels of chemical drive. We show that dilation of the airway is concurrent with upper airway muscle activation during early inspiration, that this dilation increases with increasing chemical drive, and that vagal reflexes during lung inflation inhibit this dilation during the latter half of inspiration.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Obstructive sleep apnea: a review for the orthodontist;Dental Press Journal of Orthodontics;2023

2. Ansa Cervicalis Stimulation for Obstructive Sleep Apnea;Upper Airway Stimulation in Obstructive Sleep Apnea;2022

3. Ansa cervicalis stimulation increases pharyngeal patency in patients with obstructive sleep apnea;Journal of Applied Physiology;2021-08-01

4. Muscles of Breathing: Development, Function, and Patterns of Activation;Comprehensive Physiology;2019-06-12

5. Physiology of Upper and Lower Airways;Principles and Practice of Sleep Medicine;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3