Expiratory pattern of newborn mammals

Author:

Mortola J. P.,Magnante D.,Saetta M.

Abstract

The passive mechanical time constant (tau pass) of the respiratory system is relatively similar among newborn mammalian species, approximately 0.15–0.2 s. However, breathing rate (f) is higher in smaller species than larger species in order to accommodate the relatively larger metabolic demands. Since tidal volume per kilogram is an interspecies constant, in the fastest breathing species the short expiratory time should determine a substantial dynamic elevation of the functional residual capacity (FRC). We examined the possibility of a difference in expiratory time constant between dynamic and passive conditions by analyzing the expiratory flow pattern of nine newborn unanesthetized species during resting breathing. In most newborns the late portion of the expiratory flow-volume curve was linear, suggesting muscle relaxation. The slope of the curve, which represents the dynamic expiratory time constant of the respiratory system (tau exp), varied considerably among animals (from 0.1 to 0.7 s), being directly related to the inspiratory time and inversely proportional to f. In relatively slow-breathing newborns, such as infants and piglets, tau exp is longer than tau pass most likely due to an increase in the expiratory laryngeal resistance and FRC is substantially elevated. On the contrary, in the fastest breathing newborns (such as rats and mice) tau exp is similar or even less than tau pass, because at these high rates dynamic lung compliance is lower than its passive value and the dynamic elevation of FRC is small. In dynamic conditions, therefore, the product of tau exp and f is maintained within narrow limits.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3