Differential effects of CO2 and H+ as central stimuli of respiration in the cat

Author:

Shams H.

Abstract

Effects of H+ and CO2 as independent stimuli of central respiratory chemoreceptors were studied in anesthetized cats in which pH and PCO2 on the ventral surface of the medulla (pHe and PeCO2) could be monitored in response to intravenous acid infusion or CO2 inhalation or to a combination of CO2 inhalation and base infusion that allowed PeCO2 to vary at constant pHe. Respiratory responses to these changes were monitored by measuring tidal volume (VT), respiratory frequency (f), and total ventilation. Respiratory acidosis stimulated ventilation by increasing both VT and f. Mild metabolic acidosis (decrease in pHe less than 0.05) exerted similar effects, but more severe metabolic acidosis failed to produce further stimulation. Increasing or decreasing PeCO2 at constant pHe caused pronounced increases or decreases in respiration mediated both by VT and f. For the same change in PeCO2 the respiratory effects were, however, less pronounced when pHe was kept constant than when pHe was allowed to change with PeCO2. The results suggest that both CO2 and H+ exert independent effects on respiration via central chemoreceptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Channel-mediated ATP release in the nervous system;Neuropharmacology;2023-04

2. Brain H + /CO 2 sensing and control by glial cells;Glia;2022-02

3. Central respiratory chemoreception;Respiratory Neurobiology - Physiology and Clinical Disorders, Part I;2022

4. CO2-Sensitive Connexin Hemichannels in Neurons and Glia: Three Different Modes of Signalling?;International Journal of Molecular Sciences;2021-07-06

5. Cerebral blood flow, cerebrovascular reactivity and their influence on ventilatory sensitivity;Experimental Physiology;2021-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3