Role of dopamine and arterial chemoreceptors in thermal tachypnea in conscious cats

Author:

Bonora M.1,Gautier H.1

Affiliation:

1. Laboratoire de Physiologie Respiratoire, Faculte de Medecine Saint-Antoine, Paris, France.

Abstract

In mammals submitted to a warm environment, intracerebral injection of dopamine (DA) produces no change or an increase in body temperature accompanied by an increase in metabolic heat production, but its effect on heat loss mechanisms such as vasodilation and tachypnea is not clear. Because the principal mechanism of heat loss in the conscious cat is thermal tachypnea, we studied the influence of DA on thermal tachypnea in response to heat stress (ambient temperature = 33-36 degrees C) in five conscious cats. We first studied the steady-state response to a DA agonist, apomorphine, which crosses the blood-brain barrier. Intravenous injection of apomorphine greatly reduced thermal tachypnea by decreasing respiratory frequency (from 94.9 to 52.5 breaths/min) and increasing tidal volume (from 13.2 to 20.4 ml). The subsequent injection of the DA antagonist haloperidol, which also crosses the blood-brain barrier, restored the initial tachypnea. To further investigate the mechanism involved in thermal tachypnea, we studied the influence of peripheral chemoreceptors by transiently stimulating or inhibiting carotid body (CB) activity during tachypneic breathing. CB stimulation by intravenous injection of NaCN or domperidone reduced thermal tachypnea mainly by decreasing the respiratory frequency, whereas CB inhibition by DA tended to increase frequency and thus tachypnea. It is concluded that 1) in a warm environment, central DA receptors are also greatly involved in heat loss mechanisms, 2) arterial chemoreceptor input appears to counteract this tachypneic breathing, and 3) thermal and hypoxic tachypnea may be controlled by the same mechanism in which a DA-like system has a key role.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3