Effects of ligation and embolization on Kf and multiple tracer measurements in dog lungs

Author:

Bradley J. D.1,Parker R. E.1,Harris T. R.1,Overholser K. A.1

Affiliation:

1. Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235.

Abstract

In isolated blood-perfused dog lungs, the capillary filtration coefficient (Kf) and the permeability-surface area product of urea (PS) were measured to determine their responses to two different methods of altering filtration area: lobe ligation (LL, n = 5) and glass bead embolization (GBE, n = 4) during constant perfusion rates (700 +/- 45 ml/min). When two of three lobes were ligated, Kf decreased (1.36 +/- 0.13 to 0.58 +/- 0.23 g.min-1.cmH2O-1; P less than 0.05), but PS did not change (2.02 +/- 0.4 to 1.71 +/- 0.3 ml/s). Kf per gram of perfused blood-free dry lung weight was unchanged by LL (0.051 +/- 0.17 to 0.052 +/- 0.18 g.min-1.cmH2O-1), indicating that surface area per gram measured by Kf remained the same. However, PS per gram dry lung doubled (0.07 +/- 0.016 to 0.146 +/- 0.06 ml/s; P less than 0.05) after LL, suggesting that recruitment occurred in the remaining lobe. When three lobes were embolized with 200-microns glass beads (0.48 +/- 0.01 g beads/kg body wt), PS decreased (2.1 +/- 0.22 to 0.94 +/- 0.09 ml/s; P less than 0.05), but Kf was not altered (1.01 +/- 0.17 to 1.04 +/- 0.18 g.min-1.cmH2O-1). The constancy of Kf after GBE implies that the vascular pressure increase during the Kf measurement was transmitted to both blocked and flowing vessels and thereby measured the same filtration area before and after GBE. PS decreased significantly after GBE because of a loss of perfused surface area by the beads blocking flow in small arterial vessels.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3