Exercise-induced satellite cell activation in senescent soleus muscle

Author:

McCormick K. M.1,Thomas D. P.1

Affiliation:

1. Biodynamics Laboratory, University of Wisconsin-Madison 53706.

Abstract

The purposes of this study were 1) to determine satellite cell mitotic activity and myofiber nuclear density in the soleus muscle of aged rats and 2) to examine the effect of exercise training on these same parameters. Twenty-four-month-old specific pathogen-free female Fischer 344 rats were assigned to either a training or a control group. The trained group performed 10 wk of progressive treadmill running that resulted in a significant increase (P less than or equal to 0.05) in vastus lateralis muscle malate dehydrogenase activity compared with control rats. Training produced a doubling of soleus muscle satellite cell mitotic activity (trained 1.28 +/- 0.33, control 0.52 +/- 0.13 thymidine-labeled satellite cells per 1,000 nuclei; P less than or equal to 0.05). Training also resulted in a doubling in the number of damaged fibers in the soleus muscle (P less than or equal to 0.05). Mean myofiber nuclear density was unaltered by exercise training but varied as a function of soleus muscle fiber size. Nuclear density of a subpopulation of small fibers (cross-sectional area less than one standard deviation below the mean cross-sectional area of all fibers examined) was significantly higher (P less than or equal to 0.05) than in other fibers in the soleus muscle. A high nuclear density and small size suggest that these fibers were immature. In addition, the soleus muscle from trained rats had significantly more (P less than or equal to 0.05) small fibers with high nuclear density than muscle from control animals.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3