Water transport and the distribution of aquaporin-1 in pulmonary air spaces

Author:

Effros R. M.1,Darin C.1,Jacobs E. R.1,Rogers R. A.2,Krenz G.3,Schneeberger E. E.4

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Department of Medicine, and

2. Physiology Program, Harvard School of Public Health, Boston 02115; and

3. Human Physiology Laboratory, Medical College of Wisconsin, Milwaukee, Wisconsin 53226;

4. Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114

Abstract

Effros, R. M., C. Darin, E. R. Jacobs, R. A. Rogers, G. Krenz, and E. E. Schneeberger. Water transport and the distribution of aquaporin-1 in pulmonary air spaces. J. Appl. Physiol. 83(3): 1002–1016, 1997.—Recent evidence suggests that water transport between the pulmonary vasculature and air spaces can be inhibited by HgCl2, an agent that inhibits water channels (aquaporin-1 and -5) of cell membranes. In the present study of isolated rat lungs, clearances of labeled (3HOH) and unlabeled water were compared after instillation of hypotonic or hypertonic solutions into the air spaces or injection of a hypotonic bolus into the pulmonary artery. The clearance of 3HOH between the air spaces and perfusate after intratracheal instillation and from the vasculature to the tissues after pulmonary arterial injections was invariably greater than that of unlabeled water, indicating that osmotically driven transport of water is limited by permeability of the tissue barriers rather than the rate of perfusion. Exposure to 0.5 mM HgCl2 in the perfusate and air-space solution reduced the product of the filtration coefficient and surface area ( P f S) of water from the air spaces to the perfusate by 28% after instillation of water into the trachea. In contrast, perfusion of 0.5 mM HgCl2 in air-filled lungs reduced P f Sof the endothelium by 86% after injections into the pulmonary artery, suggesting that much of the action of this inhibitor is on the endothelial surfaces. Confocal laser scanning microscopy demonstrated that aquaporin-1 is on mouse pulmonary endothelium. No aquaporin-1 was found on alveolar type I cells with immunogold transmission electron microscopy, but small amounts were present on some type II cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing Knowledge, Usage, and Perceptions of the Frazier Free Water Protocol: A Pilot Study;Journal of Surgical Research;2024-01

2. AQP1 in the Gastrointestinal Tract of Mice: Expression Pattern and Impact of AQP1 Knockout on Colonic Function;International Journal of Molecular Sciences;2023-02-10

3. Assessing the Role of Aquaporin 4 in Skeletal Muscle Function;International Journal of Molecular Sciences;2023-01-12

4. Aquaporins in Respiratory System;Advances in Experimental Medicine and Biology;2023

5. Patient suitability for free water protocols in acute stroke and general medicine: a qualitative study of clinician perceptions;International Journal of Language & Communication Disorders;2022-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3