Affiliation:
1. Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
Abstract
Shaffer, Thomas H., Raymond Foust IIII, Marla R. Wolfson, and Thomas F. Miller, Jr. Analysis of perfluorochemical elimination from the respiratory system. J. Appl. Physiol. 83(3): 1033–1040, 1997.—We describe a simple apparatus for analysis of perfluorochemicals (PFC) in expired gas and thus a means for determining PFC vapor and liquid elimination from the respiratory system. The apparatus and data analysis are based on thermal conduction and mass transfer principles of gases. In vitro studies were conducted with the PFC vapor analyzer to determine calibration curves for output voltage as a function of individual respiratory gases, respiratory gases saturated with PFC vapor, and volume percent standards for percent PFC saturation (%PFC-Sat) in air. Voltage-concentration data for %PFC-Sat of the vapor from the in vitro tests were accurate to within 2.0% from 0 to 100% PFC-Sat, linear ( r = 0.99, P < 0.001), and highly reproducible. Calculated volume loss of PFC liquid over time correlated well with actual loss by weight ( r = 0.99, P < 0.001). In vivo studies with neonatal lambs demonstrated that PFC volume loss and evaporation rates decreased nonlinearly as a function of time. These relationships were modulated by changes in PFC physical properties, minute ventilation, and postural repositioning. The results of this study demonstrate the sensitivity and accuracy of an on-line method for PFC analysis of expired gas and describe how it may be useful in liquid-assisted ventilation procedures for determining PFC volume loss, evaporation rate, and optimum dosing and ventilation strategy.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献