Respiratory mechanics in mechanically ventilated patients with respiratory failure

Author:

Rossi A.,Gottfried S. B.,Higgs B. D.,Zocchi L.,Grassino A.,Milic-Emili J.

Abstract

In 11 mechanically ventilated patients, respiratory mechanics were measured 1) during constant flow inflation and 2) following end-inflation airway occlusion, as proposed in model analysis (J. Appl. Physiol. 58: 1840–1848, 1985. During the latter part of inflation, the relationship between driving pressure and lung volume change was linear, allowing determination of static respiratory elastance (Ers) and resistance (RT). The latter represents in each patient the maximum resistance value that can obtain with the prevailing time constant inhomogeneity. Following occlusion, Ers and RT were also obtained along with RT (min) which represents a minimum, i.e., resistance value that would obtain in the absence of time constant inhomogeneity. A discrepancy between inflation and occlusion Ers and RT was found only in the three patients without positive end-expiratory pressure, and could be attributed to recruitment of lung units during inflation. In all instances Ers and RT were higher than normal. RT(min) was lower in all patients than the corresponding values of RT, indicating that resistance was frequency dependent due to time constant inequalities. Changes in inflation rate did not affect Ers, while RT increased with increasing flow.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3