Effect of positive-pressure ventilatory frequency on regional pleural pressure

Author:

Novak R.1,Matuschak G. M.1,Pinsky M. R.1

Affiliation:

1. Department of Anesthesiology, University of Pittsburgh School of Medicine, Pennsylvania.

Abstract

Regional lung ventilation is modulated by the spatiotemporal distribution of alveolar distending forces. During positive-pressure ventilation, regional transmission of airway pressure (Paw) to the pleural surface may vary with ventilatory frequency (f), thus changing interregional airflow distribution. Pendelluft phenomena may result owing to selective regional hyperventilation or phase differences in alveolar distension. To define the effects of f on regional alveolar distension during positive-pressure ventilation, we compared regional pleural pressure (Ppl) swings from expiration to inspiration (delta Ppl) and end-expiratory Ppl over the f range 0-150 min-1 in anesthetized, paralyzed, close-chested dogs with normal lungs. We inserted six pleural balloon catheters to analyze Ppl distribution along three orthogonal axes of the right hemithorax. Increases in regional Ppl were synchronously coupled with inspiratory increases in Paw regardless of f. However, at a constant tidal volume and percent inspiratory time, end-expiratory Paw and Ppl increased in all regions once a f threshold was reached (P less than 0.01). Supradiaphragmatic delta Ppl were less than in other regions (P less than 0.05), but thoracoabdominal binding abolished this difference by decreasing thoracoabdominal compliance. We conclude that the distribution of forces determining dynamic regional alveolar distension are temporally synchronous but spatially asymmetric during positive-pressure ventilation at f less than or equal to 150/min.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3