Voluntary exercise training enhances glucose transport in muscle stimulated by insulin-like growth factor I

Author:

Hokama Jason Y.1,Streeper Ryan S.1,Henriksen Erik J.1

Affiliation:

1. Muscle Metabolism Laboratory, Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona 85721-0093

Abstract

Hokama, Jason Y., Ryan S. Streeper, and Erik J. Henriksen.Voluntary exercise training enhances glucose transport in muscle stimulated by insulin-like growth factor I. J. Appl. Physiol. 82(2): 508–512, 1997.—Skeletal muscle glucose transport can be regulated by hormonal factors such as insulin and insulin-like growth factor I (IGF-I). Although it is well established that exercise training increases insulin action on muscle glucose transport, it is currently unknown whether exercise training leads to an enhancement of IGF-I-stimulated glucose transport in skeletal muscle. Therefore, we measured glucose transport activity [by using 2-deoxy-d-glucose (2-DG) uptake] in the isolated rat epitrochlearis muscle stimulated by submaximally and maximally effective concentrations of insulin (0.2 and 13.3 nM) or IGF-I (5 and 50 nM) after 1, 2, and 3 wk of voluntary wheel running (WR). After 1 wk of WR, both submaximal and maximal insulin-stimulated 2-DG uptake rates were significantly ( P < 0.05) enhanced (43 and 31%) compared with those of sedentary controls, and these variables were further increased after 2 (86 and 57%) and 3 wk (71 and 70%) of WR. Submaximal and maximal IGF-I-stimulated 2-DG uptake rates were significantly enhanced after 1 wk of WR (82 and 61%), and these increases did not expand substantially after 2 (71 and 58%) and 3 wk (96 and 70%) of WR. This enhancement of hormone-stimulated 2-DG uptake in WR muscles preceded any alteration in glucose transporter (GLUT-4) protein level, which increased only after 2 (24%) and 3 wk (54%) of WR. Increases in GLUT-4 protein were significantly correlated ( r = 0.844) with increases in citrate synthase. These results indicate that exercise training can enhance both insulin-stimulated and IGF-I-stimulated muscle glucose transport activity and that these improvements can develop without an increase in GLUT-4 protein.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3