Affiliation:
1. Departments of Physiology, Pathology, and Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756-0001; and Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
Abstract
We examined erythropoietin (EPO) gene expression and EPO production during hypoxia in two Sprague-Dawley rat strains with divergent polycythemic responses to hypoxia. Hilltop (H) rats develop severe polycythemia, severe hypoxemia, and pulmonary artery hypertension. The H rats often die from a syndrome indistinguishable from chronic mountain sickness (CMS) in humans. Madison (M) rats develop polycythemia and pulmonary artery hypertension that is modest and suffer no excess mortality. We tested the hypothesis that these rat strains have different stimulus-response characteristics governing EPO production. Rats of each strain were exposed to hypoxia (0.5 atm, 73 Torr inspired [Formula: see text]), and renal tissue EPO mRNA and EPO levels, plasma EPO, ventilation, arterial and renal venous blood gases, and indexes of renal function were measured at fixed times during a 30-day hypoxic exposure. During extended hypoxic exposure, H rats had significantly elevated renal EPO mRNA, renal EPO, and plasma EPO levels compared with M rats. Ventilatory responses and indexes of renal function were similar in the strains during the hypoxic exposure. H rats had greater arterial hypoxemia from the onset of hypoxia and more severe renal tissue hypoxemia and greater polycythemia after 14 days of hypoxic exposure. When EPO responses were expressed as functions of renal venous[Formula: see text], the two strains appeared to lie on the same dose-response curves, but the responses of H rats were shifted along the curve toward more hypoxic values. We conclude that H rats have significantly greater polycythemia secondary to poorer renal tissue oxygenation, but the stimulus-response characteristics governing EPO gene expression and EPO production do not seem to differ between M and H rats. Finally, the regulation of EPO levels during hypoxia occurs primarily at the transcriptional level.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献