Adaptation of fat cells to exercise: response of glucose uptake and oxidation to insulin

Author:

Craig B. W.,Hammons G. T.,Garthwaite S. M.,Jarett L.,Holloszy J. O.

Abstract

The purpose of this study was to determine whether exercise training alters the sensitivity and responsiveness to insulin of glucose uptake and oxidation in fat cells. Female rats were exercised by swimming 6 h/day, 5 days/wk for 12 wk. The swimmers' fat cells were smaller than those of sedentary controls of the same age and similar body weight. A larger amount of insulin was specifically bound by fat cells of the trained rats because of an increase in the number of insulin receptors. The rates of 2-deoxyglucose uptake and of glucose oxidation were higher in fat cells of trained compared with sedentary rats at all insulin concentrations. A maximal insulin stimulus resulted in rates of sugar uptake and oxidation that were about sixfold higher in trained than in sedentary rats' fat cells. This greater responsiveness to insulin could not be explained by the increase in insulin binding but appears to be mediated by adaptation/s) at a step(s) beyond the binding of insulin to its receptors. Our findings suggest that fat cells of exercise-trained animals are adapted for rapid replenishment of energy stores.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3