Affiliation:
1. Department of Internal Medicine, University of California, Davis 95616, USA.
Abstract
Reactive oxygen species can reflexly activate the cardiovascular system through stimulation of abdominal visceral afferents. The mechanism appears to involve hydroxyl radicals. We tested the hypothesis that reactive oxygen species contribute to the reflex cardiovascular response to static muscle contraction (i.e., the exercise pressor reflex). Thus blood pressure and heart rate responses to 5 min of intermittent electrically stimulated static contraction of the triceps surae muscles (15 s on, 15 s off) in anesthetized cats were compared before and after intravenous administration of the free radical scavengers dimethylthiourea (DMTU; 10 mg/kg; n = 8) or deferoxamine (Def; 10 mg/kg; n = 15). The contraction-induced pressor response was augmented from 51 +/- 6 to 61 +/- 7 mmHg after treatment with DMTU (P < 0.05) and from 44 +/- 8 to 58 +/- 8 mmHg after administration of Def (P < 0.05). Corresponding heart rate responses were not affected by either drug. Because this DMTU- or Def-induced augmentation of the exercise pressor reflex may have been due to a reduction in free radical-evoked vasodilation in the contracting skeletal muscle, popliteal artery blood velocity was measured with a Doppler flow transducer before and during contraction in the absence and presence of Def (n = 8). Blood velocity during contraction was not altered by Def (16 +/- 5 vs. 24 +/- 6 cm/s). These data suggest that reactive oxygen species exert an inhibitory effect on the exercise pressor reflex that is not associated with their local vasodilator properties. This response is opposite to that observed during stimulation of visceral afferents by reactive oxygen species.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献