Affiliation:
1. Department of Physiology, National Yang-Ming Medical College, Taipei, Taiwan, Republic of China.
Abstract
Pulmonary air embolism (PAE) usually causes small-airway collapse. Local transpulmonary pressure (Ptr) is thought to be closely associated with the activity of slowly adapting pulmonary stretch receptors (SAPSRs). To test whether discharge of SAPSRs located distal to collapsed airways is closely related to the overall Ptr, we studied 65 SAPSRs in anesthetized paralyzed open-chest dogs that were ventilated at constant tidal volume and frequency. PAE increased both Ptr and total pulmonary resistance but decreased dynamic lung compliance. Three groups of SAPSRs were identified on the basis of their locations in intrapulmonary airways. Group I had 29 SAPSRs located in airways < 1 mm in diameter. Group II had 10 SAPSRs that were found in intrapulmonary airways between 1 and 2 mm in diameter. PAE decreased the activity of 31 of the 39 SAPSRs in these two groups. Their activity during PAE was not related to Ptr. The 26 SAPSRs in group III were in airways > 2 mm in diameter. PAE increased the peak firing rate of 18 of these receptors, and there was a close relationship between the discharge frequency of these SAPSRs and the Ptr during PAE. In groups I and II, the dissociation between Ptr and SAPSR activity during PAE may have been caused by peripheral airway collapse. Activity of central fibers was blocked at higher temperatures than activity of peripheral fibers. We suggest that the response of a SAPSR to PAE depends on the location of the receptor within the lungs, and we speculate that threshold and fiber type are also related to location.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献