Affiliation:
1. Department of Physiology, Louisiana State University Medical Center, New Orleans 70112.
Abstract
The aim of this study was to investigate glucose utilization by individual tissues during epinephrine infusion. First, the applicability of the 2-deoxyglucose (2-DG) tracer technique during in vivo hyperglycemia was investigated in model systems in vitro. Epitrochlearis muscle and spleen cells were incubated with 1.25-20 mM glucose. The discrimination against 2-[14C]DG in glucose metabolic pathways, expressed by the lumped constant, remained unchanged over this wide range of glucose concentrations. It was concluded that in vivo hyperglycemia does not preclude the application of the 2-DG method. In a series of in vivo experiments, chronically catheterized conscious rats fasted for 24 h and were infused with epinephrine (0.2 microgram.kg-1.min-1), which produced a two-fold increase in plasma glucose concentration. 2-[14C]DG was injected 30 min after starting the epinephrine infusion and glucose utilization rates of individual tissues were calculated based on the concentration of phosphorylated 2-DG in samples excised at 70 min. The epinephrine infusion increased glucose utilization rates by 40-160% in hindlimb muscles, skin, ileum, liver, spleen, lung, epididymal fat, and kidney, although no change was found in the brain. Mass action of the increased plasma glucose is likely to play an important role in the enhanced rate of glucose utilization.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献