Sustained maximal ventilation after endurance exercise in athletes

Author:

Anholm J. D.1,Stray-Gundersen J.1,Ramanathan M.1,Johnson R. L.1

Affiliation:

1. Pauline and Adolph Weinberger Laboratory for Cardiopulmonary Research, Department of Medicine, University of Texas Health Science Center, Dallas 75235.

Abstract

Although impaired respiratory muscle performance that persists up to 5 min after exercise is stopped has been demonstrated during exhaustive exercise in normal young men, it is not known whether impaired respiratory muscle function follows endurance exercise to exhaustion in highly trained athletes. To study the effects of exercise on sustained maximal voluntary ventilation immediately after exercise, eight elite cross-country skiers performed a 4-min maximal sustained ventilation (MSV) test before and immediately after exhaustive exercise. Subjects were encouraged to maintain maximal ventilation (VE) throughout the MSV test. To encourage greater effort, rapid visual feedback of VE was provided on a computer terminal along with a target VE based on their 12-s maximum voluntary ventilation (MVV). The subjects (7 males, 1 female) were 18.5 +/- 0.9 yr old (mean +/- SD) and exercised for 62.5 +/- 16.7 min at 77 +/- 5% of their maximum oxygen consumption during which average VE was 106.7 +/- 24.2 l/min BTPS. The mean MVV was 196.0 +/- 29.9 l/min or 107% of their age- and height-predicted MVV. Before exercise the MSV was 86% of the MVV or 176.7 +/- 30.5 l/min, whereas after exercise the MSV was 90% of the MVV or 180.3 +/- 28.9 l/min (P = NS). The total volume of gas expired during the 4-min MSV was 706.7 +/- 121.9 liters before and 721.2 +/- 115.5 liters after exercise (P = NS). In this group of athletes, exhaustive exercise produced no deleterious effects on the ability to perform a 4-min MSV test immediately after exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3