Nonadrenergic bronchodilation in adult and young guinea pigs

Author:

Clerici C.1,Macquin-Mavier I.1,Harf A.1

Affiliation:

1. Departement de Physiologie, Institut National de la Sante et de la Recherche Medicale U296, Faculte de Medecine, Creteil, France.

Abstract

The contribution of the nonadrenergic inhibitory system to airway responses to infusion of 5-hydroxytryptamine (5-HT) was evaluated in anesthetized, tracheotomized, and paralyzed young (13 days) and adult (82 days) guinea pigs. Animals were mechanically ventilated by a constant flow ventilator. Compliance (C) and conductance (G) of the respiratory system were continuously monitored. Three series of experiments were performed involving intravenous pretreatment with 1) atropine (3 mg/kg) and propranolol (1 mg/kg); 2) atropine (3 mg/kg), propranolol (1 mg/kg), and phentolamine (2 mg/kg); and 3) atropine (3 mg/kg) and hexamethonium (2 mg/kg). 5-HT was then intravenously infused for 5 min at a rate of 40 ng.kg-1.s-1 in adults and 60 ng.kg-1.s-1 in young guinea pigs to obtain the same degree of bronchoconstriction in both groups. At the 3rd min of the infusion, bilateral cervical vagotomy was performed and C and G were measured at the maximal response, 1-2 min thereafter. Vagotomy increased bronchoconstriction (P less than 0.01) in both young animals and adults. Phentolamine did not modify this increase, but hexamethonium completely inhibited it. These results indicate that, in adult and young guinea pigs, 5-HT infusion induces reflex activation of the nonadrenergic inhibitory system, which in turn modulates the bronchoconstrictor responses to 5-HT. This neural modulation is not mediated by an alpha-adrenergic pathway.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural control of airway to deep inhalation in rabbits;Respiratory Physiology & Neurobiology;2011-07

2. Regulation of Lower Airway Function;Fetal and Neonatal Physiology;2011

3. Sensory Nerves and Airway Irritability;Sensory Nerves;2009

4. Reflex regulation of airway smooth muscle tone;Journal of Applied Physiology;2006-09

5. Regulation of Lower Airway Function;Fetal and Neonatal Physiology;2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3