Baroreceptor control of pressure-flow relationships during hypoxemia

Author:

Bagshaw R. J.,Cox R. H.,Karreman G.,Newswanger J.

Abstract

In the absence of peripheral chemoreceptors, the effects of graded hypoxemia on the carotid sinus control of central and regional hemodynamics were studied in anesthetized mongrel dogs. Baroreceptor stimulation was effected by carotid sinus isolation and perfusion under controlled pressure. Blood flows were measured in the aorta and the celiac, mesenteric, left renal, and right iliac arteries. Carotid sinus reflex set-point pressures were well maintained until hypoxemia was severe. Carotid sinus reflex set-point gain was maximal during mild hypoxemia. Reflex operating point regional flows were unaffected by hypoxemia. A factorial analysis of overall reflex increases in mean aortic pressure, flow, and power during reduced baroreceptor stimulation showed potentiation by increasing hypoxemia. Corresponding effects of baroreceptor stimulation and hypoxemia on aortic resistance and heart rate were additive. Celiac, renal, and iliac blood flows increased during both hypoxemia and reduced baroreceptor stimulation. Only in the celiac bed were blood flow changes independent of concomitant changes in cardiac output. Thus, at maximum sympathetic stimulation (low carotid sinus pressure) during hypoxemia, the cardiovascular system maintained both central and regional blood flows at high systemic blood pressures independent of the peripheral chemoreceptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shear stress, vascular remodeling and neointimal formation;Journal of Biomechanics;2003-05

2. Shear stress and the IVUS derived vessel wall thickness;Vascular Ultrasound;2003

3. Shear-Stress and Wall-Stress Regulation of Vascular Remodeling After Balloon Angioplasty;Circulation;2001-07-03

4. A neurogenic basis for acute altitude illness;Medicine & Science in Sports & Exercise;1994-02

5. Hypoxia attenuates the renin response to hemorrhage;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;1992-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3