Effects of altered ambient temperature on metabolic rate during CO2 inhalation

Author:

Kaminski R. P.,Forster H. V.,Bisgard G. E.,Pan L. G.,Dorsey S. M.,Barber B. J.

Abstract

The purpose of this study was to determine if the changes in O2 consumption (VO2) during CO2 inhalation could in part be due to stimulation of thermogenesis for homeothermy. Twelve ponies were exposed for 30-min periods to inspired CO2 (PIco2) levels of less than 0.7, 14, 28, and 42 Torr during the winter at 5 (neutral) and 23 degrees C ambient temperatures (TA) and during the summer at 21 (neutral TA), 30, and 12 degrees C. Elevating TA in both seasons resulted in an increased pulmonary ventilation (VE) and breathing frequency (f) (P less than 0.01) but no significant increase in VO2 (P greater than 0.05). Decreasing TA in the summer resulted in a decrease in VE and f (P less than 0.01) but no significant change in VO2 (P greater than 0.05). At neutral TA in both seasons, VO2 increased progressively (P less than 0.05) as PIco2 was increased from 14 to 28 and 42 Torr. The increases in VO2 during CO2 inhalation were attenuated (P less than 0.05) at elevated TA and accentuated at the relatively cold TA in the summer (P less than 0.05). Respiratory heat loss (RHL) during CO2 inhalation was inversely related to TA. Above a threshold RHL of 2 cal X min-1 X m-2, metabolic heat production (MHP) increased 0.3 cal X min-1 X m-2 for each unit increase in RHL during CO2 inhalation at the neutral and elevated TA. However, during cold stress in the summer, the slope of the MHP-RHL relationship was 1.6, indicating an increased MHP response to RHL.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hypercapnic ventilatory response is decreased in a mouse model of excessive erythrocytosis;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2016-11-01

2. The cost of ventilation in birds measured via unidirectional artificial ventilation;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2010-02

3. Effects on breathing of focal acidosis at multiple medullary raphe sites in awake goats;Journal of Applied Physiology;2004-12

4. Regulation of breathing and body temperature of a burrowing rodent during hypoxic–hypercapnia;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2004-05

5. Effects of hypoxia and hypercapnia on circadian rhythms in the golden hamster (Mesocricetus auratus);Journal of Applied Physiology;2000-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3