Prediction of maximum expiratory flow rate from area-transmural pressure curve of compressed airway

Author:

Jones J. G.,Fraser R. B.,Nadel J. A.

Abstract

The site of greatest airway deformation in dog lungs was located during maximum expiratory flow by use of tantalum bronchography, fiberoptic bronchoscopy, and airway pressure measurements. A series of area vs. transmural pressure curves for each of these segments of the airway was produced after stepwise changes in transmural pressure. Measurements of area were made using cinephotography to elucidate the effect of time on airway compliance. The maximum flow rate was calculated using the t = 0.1 s compliance curve of the airway. An equation was derived so that maximum flow (V) could be calculated from the area (A) and transmural pressure (Ptm) of the flow-limiting segment. This equation, V = K-A square root of Ptm, implied that if V were constant then A must vary as Ptm-1/2. It was demonstrated that the area-transmural pressure curve of the flow-limiting segment showed this relationship between A and Ptm and that the flow calculated from this equation and the data from the A-Ptm curve gave flows identical to those measured during maximum expiration. The phenomena of effort-independent flow and negative effort dependence are also explained in terms of the area-transmural pressure curve of the flow-limiting segment.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3