Diaphragmatic lipid peroxidation in chronically loaded rats

Author:

Supinski G.1,Nethery D.1,Stofan D.1,Hirschfield W.1,DiMarco A.1

Affiliation:

1. Pulmonary Division, Department of Medicine, Case Western Reserve University and MetroHealth Medical Center, Cleveland, Ohio 44109

Abstract

Recent work indicates that free radical-mediated lipid peroxidation takes place within the diaphragm on strenuous contraction. This phenomenon has only been demonstrated using fairly artificial experimental models and has not been studied during the type of sustained respiratory loading typically seen in patients with lung disease. The purpose of the present study was to measure the levels of several biochemical markers of protein oxidation (protein carbonyl levels) and lipid peroxidation (8-isoprostane, reduced glutathione, and oxidized glutathione levels) in diaphragms of rats subjected to chronic respiratory loading. Respiratory loading was accomplished by tracheal banding; groups of animals were loaded for 4, 8, or 12 days, and a group of sham-operated unloaded animals was used as controls. After loading, animals were killed, diaphragm contractility was assessed in vitro by using a portion of the excised diaphragm, and the remaining diaphragm and the soleus muscles were used for biochemical analysis. We found diminished force generation in diaphragms from all groups of banded animals compared with muscles from controls. For example, twitch force averaged 7.8 ± 0.8 (SE) N/cm2 in unloaded animals and 4.0 ± 0.4, 3.0 ± 0.4, and 3.4 ± 0.4 N/cm2 in animals loaded for 4, 8, and 12 days, respectively ( P < 0.0001). Loading also elicited increases in diaphragmatic protein carbonyl concentrations ( P < 0.001), and the time course of alterations in carbonyl levels paralleled loading-induced alterations in the diaphragm force-frequency relationship. Although loading was also associated with increases in diaphragmatic 8-isoprostane levels ( P< 0.003) and reductions in diaphragm reduced glutathione levels ( P < 0.003), the time course of changes in these latter parameters did not correspond to alterations in force. Soleus glutathione and carbonyl levels were not altered by banding. We speculate that respiratory loading-induced alterations in diaphragmatic force generation may be related to free radical-mediated protein oxidation, but not to free radical-induced lipid peroxidation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3