Airway edema potentiates airway reactivity

Author:

Brown R. H.1,Zerhouni E. A.1,Mitzner W.1

Affiliation:

1. Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland 21205, USA.

Abstract

Thickening of the airway wall has been hypothesized to be one of the mechanisms contributing to airway hyperresponsiveness in asthma. If such thickening of the wall is internal to the airway smooth muscle or otherwise causes a decrease in baseline airway caliber, it should also cause exaggerated airway responsiveness. In the present study, we used high-resolution computed tomography to directly measure the changes in the caliber and wall thickness of conducting airways after aerosol histamine challenge before and after normal saline volume loading. On separate days, five anesthetized dogs received either a baseline aerosol challenge of 3 mg/ml of histamine for five breaths or the same aerosol challenge immediately after a 100 ml/kg bolus of normal saline infused over a 10-min period. Baseline aerosol histamine challenge decreased airway area to 71 +/- 2% (SE) of the control value (P < 0.05). Intravenous administration of 100 ml/kg of normal saline increased wall area by decreasing airway luminal area to 78 +/- 3% of the control value (P < 0.01), with no change in outer airway area. Aerosol histamine challenge superimposed on this engorgement with normal saline challenge further decreased airway luminal area to 54 +/- 3% of the control value (P < 0.01). Quantitative modeling indicated that the edema in the airway wall was mostly outside the smooth muscle and that the smooth muscle shortening with histamine was similar with and without edema. We conclude that a moderate degree of acute airway wall thickening can lead to a potentiated constrictor response to histamine.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3