Affiliation:
1. Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri 63110.
Abstract
To test the hypothesis that lowering the concentrations of surfactant molecules at the gas-liquid interface increases viscoelastic dissipation in the lungs, the amplitude and time course of stress relaxation were quantified before and after lavage of the lungs with warm saline in five newborn and five 8-wk-old anesthetized piglets. Stress relaxation was separated from other dissipative pressure losses by fitting the pressure decays that follow airway occlusions performed during a period of constant inspiratory flow to a double-exponential regression. The amplitude of stress relaxation (defined by the term of the regression with the longest time constant) related linearly to the changes in respiratory system volume and elastic recoil preceding the occlusions both before and after the lavage. Lung lavage increased the slope of both relationships without altering the time course of the relaxations. In addition to being consistent with the proposed hypothesis, these results suggest that viscoelastic pressure losses remain linked to the elastic stresses generated during lung inflation, as proposed by Fredberg and Stamenovic's structural dumping theory (J. Appl. Physiol. 67: 2408#x2013;2419, 1989).
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献