Correlations between flow resistance and geometry in a model of the human nose

Author:

Schreck S.1,Sullivan K. J.1,Ho C. M.1,Chang H. K.1

Affiliation:

1. Department of Biomedical Engineering, University of Southern California, Los Angeles 90089–1451.

Abstract

The relationship between the pressure losses within the nasal airways and nasal geometry were studied in a 3:1 scale model. The geometry of the model was based on magnetic resonance images of the skull of a healthy male subject. Pressure measurements, flow visualization, and hot-wire anemometry studies were performed at flow rates that, in vivo, corresponded to flows of between 0.05 and 1.50 l/s. The influence of nasal congestion and the collapse of the external nares were examined by using modeling clay to simulate local constrictions in the cross section. A dimensionless analysis of the pressure losses within three sections of the airway revealed the influence of various anatomic dimensions on nasal resistance. The region of the exterior nose behaves as a contraction-expansion nozzle in which the pressure losses are a function of the smallest cross-sectional area. Losses in the interior nose resemble those associated with channel flow. The nasopharynx is modeled as a sharp bend in a circular duct. Good correspondence was found between the predicted and actual pressure losses in the model under conditions that stimulated local obstructions and congestion.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3