Expiratory airflow limitation and hyperinflation during methacholine-induced bronchoconstriction

Author:

Pellegrino R.1,Violante B.1,Nava S.1,Rampulla C.1,Brusasco V.1,Rodarte J. R.1

Affiliation:

1. Servizio di Fisiopatologia Respiratoria, Ospedale A. Carle, Cuneo, Italy.

Abstract

To investigate the role of airflow limitation on the increase of end-expiratory lung volume (EELV) during bronchoconstriction, nine stable asthmatic subjects and seven healthy subjects were challenged with inhaled methacholine (MCh). Changes in airway caliber were assessed by using forced expiratory volume in 1 s, partial forced expiratory flow at 50% of control forced vital capacity, and specific airway conductance. To detect airflow limitation, tidal flow-volume curves were superimposed on partial forced flow-volume curves at absolute lung volume. The electromyogram of the diaphragm was recorded by surface electrodes in four asthmatic and four healthy subjects, and the electrical diaphragmatic activity (DIA) during expiration was expressed as a percentage of the duration of expiratory time. In 10 subjects (9 asthmatic and 1 healthy) the partial forced expiratory flow recorded after some MCh dose impinged on tidal expiratory flow recorded before MCh. When this occurred it was associated with an increase in EELV by 0.54 +/- 0.07 (SE) liter (P < 0.001), which was larger than that occurring when lower MCh doses (0.11 +/- 0.04 liter, P < 0.05) were used, and with a moderate increase in DIA of 15 +/- 2.5% (P < 0.01). Six healthy subjects did not increase EELV after MCh despite a significant degree of bronchoconstriction; in these subjects tidal expiratory flow never impinged on forced expiratory flow, and DIA never increased. These results suggest that hyperinflation during MCh-induced bronchoconstriction is triggered by dynamic compression of the airways and is associated with moderate increase of DIA during expiration.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The therapeutic role of inspiratory muscle training in the management of asthma: a narrative review;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2023-11-01

2. The Respiratory System during Intermittent-Sprint Work: Respiratory Muscle Work and the Critical Distribution of Oxygen;Respiratory Physiology;2020-10-28

3. Asthma and Lung Mechanics;Comprehensive Physiology;2020-07-08

4. Extracorporeal Carbon Dioxide Removal for the Exacerbation of Chronic Hypercapnic Respiratory Diseases;Advances in Extracorporeal Membrane Oxygenation - Volume 3;2019-12-04

5. Extracorporeal carbon dioxide removal for acute hypercapnic respiratory failure;Annals of Intensive Care;2019-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3