A noncontact method for three-dimensional analysis of vascular elasticity in vivo and in vitro

Author:

Fronek K.,Schmid-Schoenbein G.,Fung Y. C.

Abstract

A new method is described to measure the deformation of the blood vessel wall simultaneously in longitudinal and circumferential directions. This information is of paramount importance for further characterization of the elastic properties of the arterial wall. The new method consists of a closed-circuit TV system in conjunction with a video dimension analyzer (VDA). The VDA utilizes the video signal from the TV camera and forms a DC voltage proportional to the distance between two selected points in the scene. The resulting analog voltage, calibrated in dimensional units, is recorded. Dimensional changes in two directions, due to intraluminal pressure oscillations, are tracked continuously. The measurement can be performed in vivo on exposed vessels as well as in vitro on excised specimens. Distortion caused by the end effects is completely eliminated. For further data analysis, the wall thickness of the artery is determined microscopically. Stress and strain relationship in longitudinal and circumferential directions is calculated for every intraluminal pressure change. This approach yields data on mechanical properties of the vessel wall in a far more physiological way than the hitherto used direct-contact techniques.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3