Rheology and structure of blood suspensions

Author:

Charm S. E.1,McComis W.1,Kurland G.1

Affiliation:

1. Department of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, and Medical Research Department and Medical Service, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts

Abstract

A structural model developed for kaolin suspensions was applied to blood in order to determine the structure and strength of the red cell suspensions. The yield stress of red cell suspensions determined in settling experiments agreed with the yield stress determined from shear stress-shear rate information employing Casson's equation. Theoretical considerations indicate that the shear stress-shear rate curve for blood should approach a straight line. This was found to be true at shear rates above 40 sec-1. The slope of this line was predicted from calculations based on sedimentation experiments and a modified Einstein's equation. The data suggest that the curvature of the shear stress-shear rate plot at low shear rates is due to aggregates of cells which break down under increasing shear rate, resulting finally in individual flocs. It is suggested that a floc consists of one to four cells with adhering plasma. The aggregate was calculated to have twice as much plasma associated with it as does a floc. However, the size of the aggregate could not be determined since the number of flocs associated with an aggregate could not be determined. shear stress-shear rate curve; red cell floc; red cell aggregate; sedimentation rate; blood viscosity and flow Submitted on February 28, 1963

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3