Author:
Lillo R. S.,Flynn E. T.,Homer L. D.
Abstract
This investigation examined the question of whether gas mixtures containing multiple inert gases provide a decompression advantage over mixtures containing a single inert gas. Unanesthetized male albino rats, Rattus norvegicus, were subjected to 2-h simulated dives at depths ranging from 145 to 220 fsw. At pressure, the rats breathed various He-N2-Ar-O2 mixtures (79.1% inert gas-20.9% O2); they were then decompressed rapidly (within 10 s) to surface pressures. The probability of decompression sickness (DCS), measured either as severe bends symptoms or death, was related to the experimental variables in a Hill equation model incorporating parameters that account for differences in the potencies of the three gases and the weight of the animal. The relative potencies of the three gases, which affect the total dose of decompression stress, were determined as significantly different in the following ascending order of potency: He less than N2 less than Ar; some of these differences were small in magnitude. With mixtures, the degree of decompression stress diminished as either N2 or Ar was replaced by He. No obvious advantage or disadvantage of mixtures over the least potent pure inert gas (He) was evident, although limits to the expectation of possible advantage or disadvantage of mixtures were defined. Also, model analysis did not support the hypothesis that the outcome of decompression with multiple inert gases in rats under these experimental conditions can be explained totally by the volume of gas accumulated in the body during a dive.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献