Exercise training-induced coronary vascular adaptation

Author:

Laughlin M. H.1,McAllister R. M.1

Affiliation:

1. Department of Veterinary Biomedical Sciences, Dalton Research Center, University of Missouri, Columbia 65211.

Abstract

Aerobic exercise training induces an increase in coronary vascular transport capacity. This increased transport capacity is the result of increases in both blood flow capacity and capillary exchange capacity. These functional changes are the result of two major types of adaptive responses, structural vascular adaptation and altered control of vascular resistance. Structural vascular adaptation occurs in response to exercise training in at least two forms, increases in the cross-sectional area of the proximal coronary arteries and angiogenesis. Angiogenesis has been demonstrated in that training causes moderate cardiac hypertrophy while maintaining or increasing capillary density and increasing arteriolar density. Training-induced changes in coronary vascular control have been shown to include altered coronary responses to vasoactive substances, changes in endothelium-mediated vasoregulation, and alterations in the cellular-molecular control of intracellular free Ca2+ in both endothelial and vascular smooth muscle cells isolated from coronary arteries of exercise-trained animals. The signal or signals for these adaptive responses remain unknown. The hypothesis that the adaptive strategy entails maintenance of normal shear stress in coronary arterial vessels is discussed. We propose that as a result of training-induced structural vascular adaptations and alterations in the control of vascular resistance, shear stress throughout the coronary vasculature is returned to the level present in sedentary animals. The signal for adaptation may be peak shear stress during exercise and/or average shear stress over a 24-h period of time.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3