Effects of Ca2+ withdrawal on diaphragmatic fiber tension generation

Author:

Viires N.1,Murciano D.1,Seta J. P.1,Dureuil B.1,Pariente R.1,Aubier M.1

Affiliation:

1. Institut National de la Sante et de la Recherche Medicale Unit 266, Hopital Beaujon, Faculte Xavier Bichat, Universite de Paris, Chichy, France.

Abstract

The effects of extracellular Ca2+ withdrawal were studied on isolated diaphragmatic muscle fibers and compared with the effects on the papillary, soleus, and extensor digitorum longus (EDL) contractility, using the same in vitro model. Diaphragmatic fibers were obtained from 15 rats, and papillary muscles, soleus, and EDL were obtained from 10 animals. Isometric force generated in response to 1-Hz supramaximal electrical stimulation was measured with a highly sensitive photoelectric transducer. After control measurements, perfusion with a Krebs solution depleted of calcium (0 Ca2+) was started while the fibers were continuously stimulated (4 times/min) and twitches recorded. For the papillary fibers, perfusion with zero Ca2+ was followed by an immediate decrease in twitch tension, complete twitch abolition occurring within 3 +/- 1 min after zero-Ca2+ exposure. Diaphragmatic fibers behaved similarly, although twitch abolition was delayed (10 +/- 3 min after 0-Ca2+ exposure). For the soleus fibers, the twitch amplitude amounted to 38 +/- 10% of control (62% decrease on the average) after 30 min of zero-Ca2+ exposure, no twitch abolition being noted even after 1 h of Ca2+-free exposure. The twitch amplitude of the EDL fibers amounted to 75 +/- 7% of control (25% decrease) after 30 min of zero-Ca2+ exposure. The recovery kinetics for the four fiber types after reexposure to Ca2+-containing solution were also different, with papillary and diaphragmatic fibers recovering completely within 2.5 +/- 0.5 and 4 +/- 0.5 min, respectively. By contrast, neither the soleus nor the EDL showed complete recovery after 30 min.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3