Dihedral angles between alveolar septa

Author:

Oldmixon E. H.1,Butler J. P.1,Hoppin F. G.1

Affiliation:

1. Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket.

Abstract

To determine the dihedral angle, alpha, at the characteristic three-way septal junctions of lung parenchyma, we examined photomicrographs of sections. The three angles, A, formed where three septal traces meet on section, were measured and found to range between approximately 50 and 170 degrees. Theoretical considerations predicted that the dispersion of alpha is much narrower than that of A. The mean of A and alpha is identically 120 degrees. The standard deviation of alpha was inferred from the cumulative distribution function of A. In lungs inflated to 30 cmH2O (VL30), the standard deviation of alpha was very small (approximately 2 degrees) and increased to approximately 6 degrees in lungs inflated to 0.4 VL30. These findings imply that at VL30 tensions exerted by septa are locally homogeneous (2% variation) and at lower lung volumes become less so (6% variation). At high distending pressures, tissue forces are thought to dominate interfacial forces, and therefore the local uniformity of tensions suggests a stress-responsive mechanism for forming or remodeling the connective tissues. The source of the local nonuniformity at lower volumes is unclear but could relate to differences in mechanical properties of alveolar duct and alveoli. Finally, local uniformity does not imply global uniformity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the alveolar shape in 3-D;American Journal of Physiology-Lung Cellular and Molecular Physiology;2023-03-01

2. Predicting alveolar ventilation heterogeneity in pulmonary fibrosis using a non-uniform polyhedral spring network model;Frontiers in Network Physiology;2023-02-01

3. Alveolar Wall Micromechanics;Encyclopedia of Respiratory Medicine;2022

4. Shape and Facet Analyses of Alveolar Airspaces of the Lung;Shape in Medical Imaging;2018

5. Comparative analysis of the mechanical signals in lung development and compensatory growth;Cell and Tissue Research;2017-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3