A model for hypoxic constriction of the pulmonary circulation

Author:

Marshall B. E.1,Marshall C.1

Affiliation:

1. Center for Research in Anesthesia, University of Pennsylvania School of Medicine, Philadelphia 19104.

Abstract

The detailed anatomic and biodynamic data provided for the cat lung by Zhuang et al. (J. Appl. Physiol. 55: 1341-1348, 1983) allowed pressure-flow curves for the normal lung to be generated. This model has been modified to permit the stimulation of the pressure and flow distribution effects of hypoxic pulmonary vasoconstriction for a two-compartment lung and generalized to allow comparison with the experimental results from dogs (and probably other species). Hypoxic pulmonary vasoconstriction is simulated by reduction of the initial diameter of the smallest six orders of pulmonary arteries. Expressions are presented that relate the alveolar and mixed-venous O2 tensions to a graded constriction of these vessels. In addition, the diameter of the capillary sheet and the six small arteries is defined with a maximum diameter at a transmural pressure of 20 cmH2O. Pressure-flow curves are derived for any combination of alveolar and mixed-venous O2 tension, alveolar and pleural pressure, left atrial pressure, and hematocrit. The two-compartment model is solved by an iterative procedure to identify the distribution of the flow and the resulting pulmonary arterial pressure when the compartments differ by size, hypoxic constriction, or other imposed conditions. The results of the model are compared with those from a variety of experimental preparations. It is concluded that the model is useful for identifying the quantitative causes of changes in the response to hypoxic pulmonary vasoconstriction and for the exploration of the functional influence of mechanical properties of the vasculature.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3