Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase

Author:

Rasmussen B. B.1,Winder W. W.1

Affiliation:

1. Department of Zoology, Brigham Young University, Provo, Utah 84602

Abstract

Rasmussen, B. B., and W. W. Winder. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J. Appl. Physiol. 83(4): 1104–1109, 1997.—Malonyl-CoA is synthesized by acetyl-CoA carboxylase (ACC) and is an inhibitor of fatty acid oxidation. Exercise induces a decline in skeletal muscle malonyl-CoA, which is accompanied by inactivation of ACC and increased activity of AMP-activated protein kinase (AMPK). This study was designed to determine the effect of exercise intensity on the enzyme kinetics of ACC, malonyl-CoA levels, and AMPK activity in skeletal muscle. Male Sprague-Dawley rats were killed (pentobarbital sodium anesthesia) at rest or after 5 min of exercise (10, 20, 30, or 40 m/min at 5% grade). The fast-twitch red and white regions of the quadriceps muscle were excised and frozen in liquid nitrogen. A progressive decrease in red quadriceps ACC maximal velocity (from 28.6 ± 1.5 to 14.3 ± 0.7 nmol ⋅ g−1 ⋅ min−1, P < 0.05), an increase in activation constant for citrate, and a decrease in malonyl-CoA (from 1.9 ± 0.2 to 0.9 ± 0.1 nmol/g, P < 0.05) were seen with the increase in exercise intensity from rest to 40 m/min. AMPK activity increased more than twofold. White quadriceps ACC activity decreased only during intense exercise. We conclude that the extent of ACC inactivation during short-term exercise is dependent on exercise intensity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3