Roles of hydration, sodium, and chloride in regulation of canine mucociliary transport system

Author:

Winters Scot L.1,Yeates Donovan B.1

Affiliation:

1. Pulmonary Biophysics and Bioengineering Research Laboratory, Departments of Medicine and Chemical Engineering, University of Illinois at Chicago, Chicago 60680; and Veterans Affairs Chicago Health Care System, West Side, Chicago, Illinois 60612

Abstract

Winters, Scot L., and Donovan B. Yeates. Roles of hydration, sodium, and chloride in regulation of canine mucociliary transport system. J. Appl. Physiol.83(4): 1360–1369, 1997.—To gain insight into the homeostatic mechanisms regulating airway ion/water fluxes and mucociliary transport, the canine tracheobronchial airway fluid was perturbed by deposition of hypo- and hyperosmotic aerosols for >1 h. Tracheal ciliary beat frequency (CBF) was measured by using heterodyne laser light scattering. Tracheal mucus velocity (TMV) and bronchial mucociliary clearance (BMC) were measured by using radioaerosols and nuclear imaging. Respiratory tract fluid output (RTFO) was collected by using a secretion-collecting endotracheal tube. In six dogs, CBF increased during water deposition in the airways to 180 ± 30 mg/min and RTFO increased from 2.2 ± 0.5 to 18.3 ± 1.6 mg/min, accounting for <10% of the fluid deposition. TMV and BMC were unchanged. CBF, TMV, and BMC were markedly increased by inhalation of aerosolized 3.4 M NaCl. Aerosolized 0.85 M NaCl, in contrast, decreased BMC. In this case, RTFO represented 24% of aerosol deposition. Aerosolized 0.85 M choline chloride and 0.85 M sodium gluconate enhanced BMC and TMV concurrent with a decrease in CBF. RTFO of sodium gluconate studies exceeded 50% of aerosol deposition. Thus the airways appear to have transepithelial compensatory mechanisms that reduce the impact of a moderate increases in NaCl and hydration load, but when these responses cannot adequately respond because of the delivery of impermeable ions or very high tonicity, removal of the challenges are affected by a stimulation of mucociliary transport.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3