A captive bubble method reproduces the in situ behavior of lung surfactant monolayers

Author:

Schurch S.1,Bachofen H.1,Goerke J.1,Possmayer F.1

Affiliation:

1. Department of Medical Physiology, University of Calgary, Alberta, Canada.

Abstract

We tested a new captive bubble surface tensiometer with films adsorbed from aqueous suspensions of rabbit lung surfactant and a bovine lung surfactant lipid extract and with films of dipalmitoyl-sn-3-glycerophosphorylcholine (DPPC) spread from solvents. The lack of tubes penetrating the bubble surface eliminated potential leakage pathways for the surface film, which was compressed by increasing external pressure. Surface tensions and areas were calculated directly from bubble shapes without the need of pressure measurements. After only one to two compressions, the rabbit surfactant films exhibited the low surface tension, collapse rates, and compressibilities characteristic of the alveolar surface in situ and approached the behavior of spread DPPC films. The bubble “clicking” phenomenon described earlier by Pattle (Proc. R. Soc. Lond. B Biol. Sci. 148: 217-240, 1958) was also reproduced, but only with the bovine extract, which did not perform as well as the rabbit surfactant in surface tests. These findings suggest that surfactant apoprotein SP-A, which was probably present in the rabbit but not the bovine preparations, enhances both adsorption and stability of pulmonary surfactant monolayers.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3