A muscarinic agonist inhibits reflex bronchoconstriction in normal but not in asthmatic subjects

Author:

Minette P. A.1,Lammers J. W.1,Dixon C. M.1,McCusker M. T.1,Barnes P. J.1

Affiliation:

1. Department of Thoracic Medicine, National Heart and Lung Institute, London, United Kingdom.

Abstract

Muscarinic receptors of the M2 subtype, which inhibit acetylcholine release from cholinergic nerves (autoreceptors), have been described in animal and human bronchi in vitro. We investigated whether these receptors may be involved in feedback inhibition of cholinergic reflex bronchoconstriction induced by sulfur dioxide (SO2) in seven nonasthmatic atopic subjects and in six mild asthmatic subjects. In a control experiment, total respiratory resistance (Rrs) was increased by 30 +/- 5% in nonasthmatic and by 60 +/- 18% in asthmatic subjects. In nonasthmatic subjects, pilocarpine, an agonist of muscarinic M2-autoreceptors, increased Rrs by 15 +/- 5% and addition of SO2 increased Rrs to 21 +/- 5% above base line, which was not significantly greater than after pilocarpine alone. Histamine gave a comparable bronchoconstriction (25 +/- 3% increase in Rrs) and SO2 further increased Rrs to 39 +/- 6% above base line (P less than 0.05). Thus pilocarpine appears to inhibit SO2-induced bronchoconstriction in nonasthmatic subjects, and this effect is not explained by an increase in airway tone. In asthmatic subjects, pretreatment with pilocarpine increased Rrs by 31 +/- 8% and SO2 further increased Rrs to 88 +/- 17% above base line. SO2 alone gave a 60 +/- 18% increase in Rrs. Our results suggest that feedback inhibitory muscarinic receptors may be present on cholinergic nerves in normal airways and that there may be a dysfunction of this feedback mechanism in asthmatic airways. This might be contributory to exaggerated cholinergic reflex bronchoconstriction in asthma.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 192 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The 5T approach in asthma: Triple Therapy Targeting Treatable Traits;Respiratory Medicine;2022-08

2. Eosinophils and airway nerves in asthma;Eosinophilic Lung Diseases;2022-01

3. Metformin prevents airway hyperreactivity in rats with dietary obesity;American Journal of Physiology-Lung Cellular and Molecular Physiology;2021-12-01

4. Pioglitazone prevents obesity-related airway hyperreactivity and neuronal M2 receptor dysfunction;American Journal of Physiology-Lung Cellular and Molecular Physiology;2021-07-01

5. Mini review: Neural mechanisms underlying airway hyperresponsiveness;Neuroscience Letters;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3